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A inethod is presented for performing detailed computations of thin incompres- 
sible separation bubbles on smooth surfaces. The analysis consists of finite- 
difference solutions to  the time-dependent boundary-layer or Navier-Stokes 
equations for the flow in the immediate vicinity of the bubble. The method 
employs the McDonald-Fish turbulence model, to predict the development 
of the time-mean flow field, as influenced by the free-stream turbulence level. 
It also employs a viscous-inviscid interaction model, which accounts for the 
elliptic interaction between the shear layer and inviscid free stream. The 
numerical method is based on an alternating-direction implicit scheme for 
the vorticity equation. It employs transformations, to allow the free-stream 
boundary to change in time with the shape of the computed shear layer, and to 
ensure an adequate resolution of the sublayer region. Numerical solutions are 
presented for transitional bubbles on an NACA 66,-018 airfoil a t  zero angle of 
incidence with chordal Reynolds numbers of 2.0 x lo6 and 1-7 x lo6. These have 
a qualitative behaviour similar to that observed in numerous experiments; they 
are also in reasonable quantitative agreement with available experimental data. 
Little difference is found between steady solutions of the boundary-layer and 
Navier-Stokes equations for these flow conditions. Numerical studies based on 
mesh refinement suggest that the well-known singularity a t  separation, which is 
present in conventional solutions of the steady boundary-layer equations when 
the free-stream velocity is specified, is effectively removed when viscous-inviscid 
interaction is allowed to influence the imposed velocity distribution. 

1. Introduction 
A technique is described herein for performing detailed computations of thin 

incompressible separation bubbles on smooth surfaces. Separation bubbles occur 
frequentIy on airfoils, especially downstream of the pressure peak near the 
leading edge of airfoils a t  incidence, and are known to influence the stalling 
characteristics of airfoils. Also, separation bubbles can be important in heat 
transfer applications, since experiments often reveal relatively low heat transfer 
in t3he separated region and relatively high heat transfer near reattachment. 
Three types of separation bubbles are distinguished here depending on where 
transition occurs. Bubbles are either laminar, transitional, or turbulent according 
to whether transition occurs far downstream of reattachment (if a t  all), between 
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separation and reattachment, or far npst.ream of separation, respectively. This 
terminology differs somewhat from that used in previous publications on airfoil 
separation bubbles (cf. Ward 1963), wherein the present transitional bubbles 
are referred to as laminar bubbles. Previous experimental work surveyed by 
Ward (1963) has also led to a distinction between ‘short’ and ‘long’ bubbles, 
although their effect on the pressure distribution is probably more important 
than their length. Short bubbles cover at most a few per cent of the airfoil chord 
and affect the pressure distribution only in the immediate vicinity of the bubble. 
Elsewhere, the pressure distribution is much the same as predicted by inviscid 
flow theory. Long bubbles cause a major change in the pressure distribution over 
the entire airfoil and can cover much of the airfoil surface. Only short bubbles are 
considered here, primarily because the analysis in its present form treats the 
interaction between bubble and inviscid flow by means of a localized correction 
to a specified inviscid pressure distribution. This restriction could be removed 
either by combining the present analysis with a time-dependent inviscid calcula- 
tion procedure and allowing for interaction between the viscous and inviscid 
solutions, or for that matter by solving the Navier-Stokes equations for the 
entire flow field. While these approaches are in no way ruled out as possible 
alternatives to  the present approach, they would at the very least require a 
substantial increase in computational effort to obtain a satisfactory resolution 
of the flow. 

The present technique can be applied to completely laminar, transitional, or 
fully turbulent separation bubbles, although in view of the available experi- 
mental evidence and the authors’ personal interests, only transitional bubbles are 
considered here. Most previous work on transitional separation bubbles has been 
experimental. It has focused on developing empirical correlations or semi- 
empirical theories for predicting what type of bubble (long or short) will occur 
in any given case, and what effect the bubble will have on the stalling charac- 
teristics of airfoils. Much of this work has been surveyed by Ward (1963). 
Recently, Crimi & Reeves (1972) and McCroskey & Philippe (1975) have com- 
bined semi-empirical theories for separation bubbles with inviscid flow theories 
and finite-difference calculation procedures for unsteady Iaminar and turbulent 
boundary layers, in efforts to predict dynamic stall. There does not appear to 
have been any previous attempt, however, to compute a transitional separation 
bubble in detail. Such an analysis is complicated by the presence of reverse flow, 
the effect of viscous-inviscid interaction, and the occurrence of transition in the 
separated shear layer. The present analysis is an outgrowth of the procedure used 
by Briley (1971) to compute laminar separation bubbles, and is based on a 
patching procedure wherein the time-dependent boundary-layer or Kavier- 
Stokes equations are solved in the immediate vicinity of the bubble. The 
remainder of the flow fieId is t,reated using inviscid flow theory, and by solution 
of the steady boundary-layer equations. (See figure 1 .) Such a patching procedure, 
based on boundary-layer theory, seems reasonable provided the separation 
bubble is of order Re-* in thickness and large-scale separation does not occur. 
Of course the patching approach presumes an adequate knowledge of boundary 
conditions at  the interfaces. In  addition to a viscous-inviscid interaction model, 
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the analysis employs the McDonald-Fish (1973) turbulence model, which was 
developed for transitional and turbulent boundary layers. The McDonald-Fish 
procedure is based on the solution of an integral form of the turbulence kinetic 
energy equation, to obtain the streamwise development of a one-parameter 
mixing-length profile normal to the wall. It allows for the influence of free-stream 
turbulence and wall roughness. Only minor modifications to the McDonald-Fish 
turbulence model were necessary for the application to transition in the separated 
shear layer. Although the McDonald-Fish turbulence model was well suited to 
implementation in the present computational scheme, it is emphasized that 
almost any of the currently available proven turbulence models (see, e.g., Launder 
& Spalding 1972) could be incorporated into the procedure, without significant 
change to any of the inferences to be made concerning the mathematical 
behaviour of the solutions. But the McDonald-Fish model does provide a realistic 
detailed description of the location of transition, and of mean flow behaviour 
during and after transition, including the sublayer region, as required by the 
present finite-difference solution procedure. Finally, although the present 
analysis is realistic only for relatively thin bubbles, it seems reasonable that 
the analysis might nevertheless serve as a useful element in a method for pre- 
dicting the onset of large-scale separation. I n  fact, Shamroth & Kreskovsky 
(1974) have recently incorporated the present analysis into a procedure for 
computing time-dependent flow past airfoils, in an effort to predict the onset 
of dynamic stall. 

2. Analysis 

2.1.1. Viscous-inviscid interaction. A division of the flow field into a viscous 
separation bubble region near the wall, and an inviscid outer region naturally 
gives rise to the possibility of viscous-inviscid interaction between the two 
regions, and consequently, to a change in the interface boundary conditions. I n  
boundary-layer terminology, this would imply that the presence of the bubble 
changes the effective shape of the wall, which in turn alters the inviscid velocity 
or pressure distribution that would otherwise be imposed on the bubble. Of 
course, for flows involving large-scale separation such as occurs during stall, there 
is obviously very strong interaction. The bubble is no longer thin, and the 
boundary-layer concept is not applicable. There is substantial experimental 
evidence, however, that even relatively thin bubbles involve a t  least a localized 
interaction with the inviscid free stream (cf. Gault 1955; Gaster 1966). 

Although most previous studies involving viscous-inviscid interaction have 
considered supersonic flow with separation, there have been several incompres- 
sible calculations, without interaction, involving either laminar separation or 
laminar separation bubbles. Efforts to solve the boundary-layer equations when 
there is separation have been complicated both by the need to account for down- 
stream conditions after separation, and by an apparent singularity a t  the 
separation point. There is considerable analytical and numerical evidence that 
such a singularity exists when the steady boundary-layer equations are solved 

2.1, Backgrouizd 
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in the conventional manner, with a specified free-stream velocity or pressure 
distribution (a direct solution). The separation singularity has been discussed, for 
example, by Goldstein (1948) and Brown & Stewartson (1969). The belief that the 
boundary-layer equations should nevertheless describe thin separation bubbles 
has led naturally to the hypothesis that the singularity results from a failure to 
allow in some manner for interaction with the inviscid flow. Since the usual 
separation singularity is manifested by an infinite displacement thickness and 
an infinite streamwise gradient of the wall shear at  separation, efforts have been 
made to compute inverse solutions, in which a smooth displacement thickness or 
wall shear distribution is specified, and the free-stream velocity distribution 
obtained as part of the solution. There is some numerical evidence (Catherall & 
Mangler 1966; Klineberg & Steger 1974; Carter 1974) that this procedure removes 
the singularity at separation, although in some instances other difficulties have 
persisted downstream of separation. Regardless of whether displacement thick- 
ness or wall shear is specified, however, inverse solution procedures ultimately 
require some means for selecting boundary conditions that lead to a solution 
compatible with the inviscid free stream. Inverse procedures are therefore 
expected to be difficult to use routinely, inasmuch as they would require con- 
siderable skill on the part of the user, to determine the appropriate distribution 
of the specified variable that allows the desired free-stream conditions to be 
imposed. In  any event, caution is necessary when numerical solutions are 
interpreted with regard to possible singularities. It will later be seen that it is 
possible to compute numerical solutions in which a singularity is locally smoothed 
away, even though it is presumably present in the exact differential solution. In  
this circumstance, a singularity can be detected only by mesh refinement. 

Another problem which arises with the steady boundary-layer equations is that 
the spatial direction of integration changes locally with the direction of the 
streamwise velocity component. I n  a region of reverse flow, this implies that two 
solutions integrated from different directions must be compatible. Thus, even 
though the steady boundary-layer equations are parabolic everywhere, the 
separation bubble problem is not an initial-value problem, but requires down- 
stream conditions after separation. Furthermore, if interaction with the inviscid 
free stream is allowed, this interaction is necessarily elliptic in character for 
subsonic flow. 

2.1.2. Previous work. There have been numerous direct solutions, computed 
by forward-marching integration, that exhibit singular behaviour a t  separation. 
Catherall & Mangler (1966) first computed inverse solutions that are apparently 
regular at separation. Their procedure consisted of forward-marching integration 
with a smooth distribution of displacement thickness specified near separation. 
They nevertheless encountered a slight instability downstream of separation, 
which they attributed t o  a lack of uniqueness caused by the absence of down- 
stream boundary conditions after separation. 

In  an effort to account properly for downstream boundary conditions, Briley 
(1971) solved the complete Navier-Stokes equations for the flow in the vicinity 
of thin laminar bubbles. This approach also avoided the separation singularity, 
since solutions of the Navier-Stokes equations are regular a t  separation. More 
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recently, Leal (1973) has computed solutions of the Navier-Stokes equations for 
steady separated flow over a flat plate in a linearly retarded free stream, in cases 
where the bubble is not thin. These solutions involve large-scale separation, and 
consequently a strong alteration of the pressure distribution over the entire 
plate from that which occurs for inviscid flow. Of particular interest are the 
direct solutions of the boundary-layer equations which Leal computed by 
forward-marching integration but using pressure distributions from his Navier- 
Stokes solutions. Although these boundary-layer solutions displayed singular 
behaviour a t  separation, the predicted location of the separation point 
approached that of the Navier-Stokes solutions as the Reynolds number was 
increased. Further Navier-Stokes solutions have been computed by Ghia & 
Davis (1974), to determine both the inviscid and viscous regions for flow past 
blunted semi-infinite thick plates, and including thin laminar bubbles. 

Klemp & Acrivos (1 972) devised a procedure for solving the steady boundary- 
layer equations, which accounts for downstream boundary conditions when 
there is reverse flow. They divided the boundary layer into two regions, along 
an assumed u = 0 curve, and computed direct solutions by forward-marching 
integration in the appropriate direction of the flow in each region. The assumed 
u = 0 curve was then adjusted iteratively, until the shear stress along this com- 
mon boundary was continuous. Klemp & Acrivos applied their method to the 
problem of uniform flow past a parallel stationary flat plate of finite length, 
whose surface moves a t  constant velocity in a direction opposite to that of the 
free stream. It is not clear whether the Klemp-Acrivos procedure would be 
generally effective for other more conventional separated flows, however, since 
in the problem considered the separation and reattachment points are assumed 
known in advance, and separation is caused by a singularity in boundary condi- 
tions, rather than by an adverse pressure gradient. 

Phillips & Ackerberg (1973) developed a method for solving the time- 
dependent boundary-layer equations when there is reverse flow. They computed 
solutions for flow past a semi-infinite flat plate parallel to a uniform free stream 
which fluctuates periodically in time, and incorporated downstream reverse-flow 
boundary conditions by using an exact Rayleigh solution. Although Phillips & 
Ackerberg encountered no singularity a t  the point of zero skin friction, there is 
apparently no evidence that a zero-skin-friction singularity exists for unsteudy 
flow. It is therefore uncertain how the Phillips-Ackerberg method would behave 
in a computation involving steady separation. 

Klineberg & Steger (1 974) computed both direct and inverse numerical solu- 
tions for laminar separation bubbles, using a relaxation procedure for the steady 
boundary-layer equations. Of particular interest are their direct solutions of 
first-order accuracy which, with streamwise mesh refinement, display a singular 
behaviour a t  separation, despite a reasonable treatment of downstream condi- 
tions after separation. They were also able to compute second-order inverse 
solutions with specified wall shear stress, and these solutions are apparently 
regular a t  separation. One such case was presented in which the mesh was 
refined, however ; and this appears to display singular behaviour in the computed 
pressure gradient and transverse velocity component downstream of separation. 
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Carter (1974) also computed inverse solutions for laminar bubbles, both with 
displacement thickness and with wall shear specified as a boundary condition. 

3.1.3. The present approach. In  the present analysis, the two-dimensional time- 
dependent form of both the Navier-Stokes equations and the boundary-layer 
equations are solved as an initial-value problem in time. The time-dependent 
approach greatly simplifies both the incorporation of downstream conditions 
after separation, and the treatment of interaction with an elliptic free stream. 
Steady solutions are obtained as the asymptotic limit for large time of the 
unsteady solution, in the same manner that steady flows are established physic- 
ally. The time-dependent formulation therefore does not assume a priori the 
existence of a steady solution. 

The analysis assumes that the bubble is thin enough for the boundary-layer 
concept to be valid; and the bubble solutions are computed with specified free- 
stream velocity distributions. But the particular velocity specified consists of the 
usual inviscid velocity plus an elliptic correction, which accounts for the viscous- 
inviscid interaction, and which is computed as part of the solution. Such solutions 
are aptly described as interacted direct solutions. The interacted bubble solution 
is thereby obtained using a single inviscid solution, which itself does not account 
for the interaction. This treatment of the interaction eliminates any need for 
iteration between several inviscid and boundary-layer solutions, in an effort to 
match boundary conditions. The interaction model assumes that the effective 
wall shape consists of the actual wall plus a thin correction, based on the distribu- 
tion of displacement thickness in the localized interaction region. Although it is 
not established rigorously, numerical evidence based on mesh refinement will be 
presented which suggests that the interaction removes the separation singu- 
larity in the boundary-layer equations, without causing any subsequent diffi- 
culties in the separated flow region. Regardless of whether singularities are 
present in the exact differential solution, however, the numerical method used 
permits the computation of stable and smooth difference solutions, by using first- 
order difference approximations for streamwise derivatives. This locally smooths 
singularities in streamwise derivatives. Of course, the solutions would neverthe- 
less approach the exact solution with mesh refinement, including any singularities 
which might be present. Computed results for transitional separation bubbles are 
compared with the experimental measurements of Gault (1 955) and Bursnall & 
Loftin (1951). In  general, good agreement is found. 

3.3. Governing equations 

3.2.1. Basic equations. The analysis begins with the time-averaged incom- 
pressible Navier-Stokes equations written in terms of vorticity and stream 
function. These are later reduced to the bonndary-layer equations. Cartesian 
co-ordinates are appropriate, if surface curvature is assumed small in the region 
of the bubble. The time averaging is carried out in the usual manner for turbulent 
flows (e.g. Hinze 1959), by expressing the dependent variables as the sum of 
a time-averaged quantity (denoted by an overbar) and an instantaneous fluctu- 
ating quantity (denoted by a prime). The time averaging is performed over a 
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period of time sufficiently long to remove the random turbulent fluctuations, 
but not so long as to remove the time dependence of the mean flow. The two- 
dimensional time-averaged Navier-Stokes equations are given by 

( 2 . 2 )  

(2.3) 

5 is vorticity; q? is stream function; x and y are the streamwise and transverse 
co-ordinates; u and w are the x and y velocity components; Y is the (constant) 
kinematic viscosit,yY; and t is time. 

I n  view of the assumption of a thin shear layer, the Reynolds stress term 
a2u”/?r2 is assumed small, and is neglected. Although the Reynolds normal 
stress term a2(u’2 - v’2)/ax ay is generally thought to be negligible in unseparated 
turbulent boundary layers, it is sometimes argued that this term acquires some 
importance near separation. Not much is available in the way of experimental 
measurements, however, to provide guidance in modelling this term in separation 
bubbles and during transition. The Reynolds normal stress term is therefore 
neglected in the vorticity equation, except in one instance, where it is retained 
for the purpose of evaluation. It is convenient for the analysis and consistent with 
the McDonald-Fish model to represent the turbulent stress in terms of an 
effective turbulent viscosity up, where UIZ)) = - vraii[ay, and also to invoke the 
thin-shear-layer assumption, and set aii/ay w E in this term. There are of course 
a number of physical shortcomings involved, as a result of using an effective 
viscosit’y hypothesis. As mentioned above, it is believed that these shortcomings 
would not influence the mathematical nature of the governing equations. 
Furthermore, alternative and less restrictive turbulence models can readily be 
incorporated into the present computational framework. I n  the case of the less 
restrictive models, however, the computational labour is usually greatly 
increased. The increased labour would be justifiable only by a potential improve- 
ment in predictive capability, not clearly evident a t  this time to the present 
authors. 

It is important, for reasons of computational efficiency, to limit the extent of 
the computational domain in the y direction to the immediate vicinity of the 
shear layer. Since the thickness of the shear layer varies with x in a manner which 
is initially unknown, the following co-ordinate transformation is introduced: 

- -  

7 = y/h(x,t), 2 = X, t” = t. (2.4) 

h, the physical location of the free-stream boundary, has a specified arbitrary 
shape which can vary with time. It is convenient to locate the free-stream 
boundary just outside the boundary layer; so h is defined by h = 1*56(x, t ) .  (6 is 
the local boundary-layer thickness, defined as the point where ZC is 99 % of the 
free-stream velocity. It is computed from the numerical solution after each time 
step.) 113th this treatment, the shape of the outer boundary is adjusted with 
time, to fit the shape of the shear layer. The transformation (2.4) is incorporated 
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mathematically as a simple change in independent variables. Thus relative 
accelerations of Coriolis type arising from the moving co-ordinate system are 
neglected; but these terms are not significant for the present objective of com- 
puting steady solutions. After making the foregoing assumptions, and intro- 
ducing the transformation (2.4), the tildes in (2.4) are dropped for notational 
simplicity. Equations (2.  i)-(2.3) become 

(2.6) 

(2.7) 

D denotes a differential operator defined by 

With the stated assumptions for the turbulent Reynolds stresses, (2.5)-(2.8) 
represent the complete Navier-Stokes equations. However, these equations are 
reduced to a form which is equivalent to the boundary-layer equations, simply by 
neglecting the last term in each of (2.5) and (2.6), i.e. by defining D = 0. Alterna- 
tively, this form of the boundary-layer equations can be obtained directly from 
their conventionalvelocity-pressure form by differentiation with respect to y and 
the definition p = i?ii/ay. 

The present analysis consists of a numerical solution of either the boundary- 
layer or Navier-Stokes form of (2.5)-(2.8). The wall and free-stream boundary 
conditions employed in the solution are 

- 
U = V =  0 for 7 = 0 and ii= ?&+TiI, E =  0, for 9 = 1. (2.9) 

ue is the specified inviscid velocity distribution, and iiI is the elliptic correction 
due to viscous-inviscid interaction. It is a novel feature of the present analysis 
that both the location of the free-stream boundary h and the iir portion of the 
free-stream boundary conditions are updated after each time step, and thereby 
evolve as part of the solution. At the upstream boundary, and $ profiles are 
prescribed from the output of a steady boundary-layer calculation procedure. 
In  view of both its availability and compatibility with the present analysis, the 
McDonald 85 Fish (1973) procedure was used to compute the required steady 
boundary-layer solutions. At the downstream boundary, the conditions 
aZ@3x2 = a2'@/ax2 = 0 are good approximations for a thin boundary layer, and 
were employed when needed. If desired, the downstream velocity profiles com- 
puted from the present bubble analysis can be used to restart a steady boundary- 
layer calculation procedure, to complete the development of the reattached 
boundary layer (cf. figure 1). To complete the problem formulation, it remains 
to specify the effective turbulent viscosity vT and the interaction correction U, 
in terms of the mean flow variables. 

- 
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FIGURE 1. Schematic drawing of patching procedure for computing thin 
separation bubbles. 

2.2 .2 .  Turbulence model. Since the turbulence model used in the present calcu- 
lations has been discussed in detail by McDonald & Fish (1973), only a brief 
summary is given here, along with a description of the modifications introduced 
for the application to separated flow. The turbulence model is based on the 
solution of an integral form of the turbulence kinetic energy equation. Following 
Townsend (1961) and Bradshaw, Ferriss & Atwell (1967), McDonald & Fish intro- 
duce structural scales a, and L, together with a one-parameter mixing-length 
profile 1. These scales are defined by 

(2.10) 

- - -  
= u ' ~ + v ' ~ + w ' ~  is the turbulence kinetic energy, and B represents the sum of 

the turbulence dissipation terms. Absolute values have been introduced, to 
accommodate negative turbulent shear stresses. Using the present notation, the 
incompressible form of the turbulence kinetic energy equation derived by 
McDonald & Fish (1973) can be written as 

h)/dz = $2 - $3 + E,  (2.11) 

where (2.12) 

(2.13) 

(2.14) 

(3.15) 

Since steady solutions are of primary interest in the present study, it is con- 
venient to treat the turbulence as quasi-steady, and thus the steady form of the 
turbulence energy equation is solved a t  each time step. Solutions obtained using 
the present analysis, but based on the unsteady turbulence equation, are reported 
by Shamroth & Kreskovsky (1974). I n  (2.11) the dl term represents the stream- 
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wise convection of turbulence energy, $2 represents the net production of turbu- 
lence, 4, represents the normal stress production, and E is a source term which 
represents the turbulence energy entrained from the free stream. Normally, E is 
dominated by the term, and the pressure-velocity correlation ~'211 can be 
neglected.Porverysmal1free-stream turbulence levels (a2 less than about 0*25%), 
however, the acoustic energy absorbed by the boundary layer can be important, 
and this energy contribution can be represented by the p- term in E. 

The dissipation length scale L is obtained from an empirical fit to Bradshaw's 
(1967) measurements of L in an equilibrium boundary layer. It is given by 

L = 0.16tanh [~y/(O.16)]. (2.16) 

K is the von Kkmbn constant, taken as 0.43. On the basis of experimental 
evidence, the mixing length 1 is represented by a one-parameter (Ze) profile 

1/6 = (le/6) tanh ( K Y / Z ~ ) .  (2.17) 

Both L and 1 are scaled by a sublayer damping factor 9(y+), where y+ = y(r /p) j /v ,  
r is shear stress, and p is density. The damping factor is given by 

93 = PP(y+-F)/c.. (2.18) 

P is the normal probability function, yf = 23 and (r = 8. In  the present analysis, 
y+ is based on a local stress; but, to accommodate negative shear stresses, absolute 
values are taken so that 7/p = ( v +  vT)  la;li-/ayl, and the damping was not allowed 
to decrease in the positive y direction. 

For fully turbulent boundary layers, the structural coefficient a, has a value of 
about 0.15. For transitional boundary layers, McDonald & Fish argue that a, is 
influenced mainly by viscosity, and accordingly set a, = f ( R r ) ,  where Rr, the 
turbulence Reynolds number, is the layer-averaged value of Y ~ / V  a t  a given 
streamwise location, i.e. 

(2 .19)  

The relationship between a, and ET was derived from a consideration of the 
incompressible flat-plate equilibrium turbulent boundary layer. In terms of 
t'he momentum-thickness Reynolds number R,, a, is given by 

a, = ao(R,/4?o)/[l + 6-666ao(R#/R#o - I ) ] .  (2.20) 

a. is the value of a, at a specified Reynolds number Roo. The change in independent 
variables from R, to ET is accomplished with the empirical relationships 

R, = 6 8 * l E r +  614.3, Rr > 40, (2 .31)  

R, = Er < 1, (2.22) 

with a simple cubic interpolation (matching value and slope a t  the join points) 
for the intermediate zone 1 < RT < 40. The constant a, has the value 0.012 a t  
Rr = 1.  Solutions for attached boundary layers are not at all sensitive to the 
values of a2 and a3, and McDonald & Fish used the fully turbulent values of 
0.5 and 0-2, respectively. The location of transition in the present bubble solu- 
tions, however, was more sensitive to the normal stress terms in (2.1 I ) ,  and hence 
to the value of (a2 --a3); so these structural coe6cients were given further con- 
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sideration. In  the absence of any experimental evidence on the behaviour of 
(a2 - a3) during transition, the assumption is made that (a ,  - a,) depends on El, 
as does al. Klebanoff (1956) has measured turbulence characteristics in a fully 
turbulent flat-plate boundary layer: inside the sublayer, the measured value of 
(u', - d2) /q2  = (a, - a,) increases from the fully turbulent value of 0.3 to a value 
of about 0-9 very near the wall, where the laminar viscosity is dominant (i.e. 
small z,). If it is assumed that the turbulence in the early stages of transition 
(small ST) has a structure similar to that in the viscous-dominated sublayer, 
then (a,-a,) should approach 0.9 for small El. I n  the absence of any other 
evidence, (a, - a,) is approximated by the linear relationship 

- - -  

0-3+0.6(1-ET),  R, < 1, 

{0-3, R, 2 1. 
a,-a3 = (2.23) 

Given the relationships for the various structural scales and a knowledge of the 
mean flow, (2.11) becomes an ordinary differential equation which governs the 
streamwise development of the mixing-length parameter 1,. For fully turbulent 
equilibrium boundary layers, lJ8 has a value near 0.09; for laminar flow, I,/& is 
zero. The only additional information necessary to determine transition is the 
free-stream turbulence level, which is seen to provide a small source term E in 
(2.11) which starts the transition process. After a two-point backward difference 
approximation is introduced for the x-derivative term, (2.11) provides an implicit 
integral relationship for 1, a t  xj in terms of le a t  the previous upstream location 

This implicit relationship is easily solved by the standard secant method 
(Ralston 1965). Given the value of 1, that satisfies the turbulence energy equation, 
it is a simple matter to evaluate the turbulent viscosity tiT from the mixing length. 

2.2.3. Viscous-inviscid interaction model. The interaction model is based on 
the following assumptions: (i) the bubble is thin; (ii) the interaction region is 
localized, and coincides with the solution domain; and (iii) the interaction is due 
to the distribution of boundary-layer displacement thickness 8" in the vicinity 
of the bubble. Accordingly, the effective wall shape is taken to be the actual wall 
plus a correction 8;(x), the variation in 8" from its value 8: a t  the upstream 
boundary (the beginning of the interaction region). The definition of 8; is shown 
schematically in figure 2 .  The surface correction 8: is regarded as a 'thickness 
distribution', which occurs in a velocity field given by 'u,(x), the inviscid velocity 
distribution appropriate for the actual (uncorrected) surface. With this interpre- 
tation of 8; and the assumption that 8; is thin, the interaction velocity correction 
;ill induced by 8; can be evaluated using Allen's (1945) 'base profile' theory for 
thin airfoils. To implement Allen's theory, 8; is replaced by a discrete source-sink 
system, one element of which is shown in figure 3. Each source-sink element 
AQi+g has a strength 

(2.24) 

At a given point x,, the velocity induced by each source-sink element is 
AQi+@(z, - xi+*). The final velocity correction UI a t  a given point is the sum 
of the velocities induced a t  this point by all of the source-sink elements in the 
interaction region. A minor difficulty, which arises with the assumption of a local 
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\-Source-sink element 

FIGURE 3. Schematic drawing of viscous-inviscid interaction model. 

interaction region beginning at  the upstream boundary, is that the interaction 
correction has its own ‘leading-edge ’ region at  the start of the interaction region. 
Consequently, the correction U, is non-zero at  the upstream boundary, and the 
corrected velocity distribution Ee + Ur has a small jump at  the upstream boundary. 
The small jump is removed by adding a constant amount to Zr at each point in 
the interaction region, to make Ti, zero at  the upstream boundary. The constant 
added to ;It, represents an adjustment for the displacement or ‘blockage ’ effect 
of the boundary layer upstream of the interaction region. The assumption that 
the interaction region is localized can of course be removed, if solutions are com- 
puted along the entire airfoil surface, rather than just in the immediate vicinity 
of the bubble. 

2.3. Nethod of solution 

2.3.1. General features. Solutions are computed for both the Navier-Stokes 
and boundary-layer forms of (2.5)-(2.7). In  each case, the method of solution is 
based on an alternating-direction implicit (ADI) method for the vortieity equa- 
tion ( 2 . 5 ) .  The discretization is carried out in the usual manner; and the notation 
FZj is used to denote F(x, ,  yi, t n ) ,  where P is a surrogate symbol, representing 
any of the dependent variables. Although the transformation (2.4) improves 
computational efficiency by limiting the y extent of the solution domain to 
0 < y < 1) a further increase in efficiency is obtained by using a non-uniform 
mesh for 7, so that grid points are very closely spaced in the sublayer region 
where gradients are very steep, and more widely spaced in the outer portion of 
the shear layer where gradients are much smaller. The analytical co-ordinate 
transformation of Roberts (1971) is a very effective means of introducing such 
a non-uniform mesh; it was employed in all computations reported here. If N 
grid points are to be used in the range 0 < 91 < 1, then Roberts’ transformation 
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where b = 1/( 1 - qS), and yS is a parameter equal to the estimated value of 7 at the 
edge of the sublayer region. The use of equally spaced points in the transformed 
co-ordinate yT ensures an adequate resolution of both the overall region 
0 < 7 6 1 and the sublayer region 0 < 7 < vS. 

If vorticity is regarded as the dependent variable, then (2.5) is linear if U, 
ap/ax, vT and h are known. Although each of these latter quantities ultimately 
depends on g, they are lagged across a time step in the numerical computation 
o f f  (i.e. the lagged quantities are evaluated from the known solution at  previous 
time levels, and updated after each time cycle). The vorticity equation (2.5) is 
approximated by an implicit two-point backward time-difference scheme; except 
as noted below, spatial derivatives are approximated by three-point, second- 
order central-difference formulae. In  some circumstances, the use of central 
differences for convection terms can lead to instability, or other anomalous 
behaviour. In  view of the enhanced stability it provides, the streamwise convec- 
tion term iiac//ax in ( 2 . 5 )  can, as an option, be approximated by the upwind 
difference scheme 

(2.26) 

This first-order differencing is equivalent to introducing a streamwise diffusion 
term with diffusion coefficient +\Ti\ Ax (which therefore vanishes as Ax is 
decreased), and was used for all solutions presented here. But greater care is 
required for the transverse convection term (@/ax) (aZJla7) h, since the transverse 
direction also includes physical diffusion terms that must be represented accu- 
rately. Second-order central differences are used for this transverse convection 
term; and no difficulty is anticipated, provided the transverse mesh spacing Aq is 
sufficiently small. Difficulties may arise with the central difference formula, how- 
ever, when the effective mesh Reynolds number Re,, = la$/axl hA?(r/(v + vT)  is 
greater than two (cf. Roache 1972). In  the outer portion of the shear layer, where 
both a$/ax and AT are relatively large, Re,, was sometimes greater than two for 
the mesh spacings used. In  this circumstance, small 7-direction spatial oscillations 
in developed near the outer boundary, and instability followed. The instability 
was apparently due to the sensitivity of the computed boundary-layer thickness 
6, and hence of the outer boundary location h, to these oscillations. It was found 
that the oscillations could be eliminated via the computational stratagem of not 
allowing the total viscosity v + vT to have a value less than +la$/axl hA7 outside 
the boundary layer (i.e. for y 2 S), thereby ensuring that Re,, is no greater than 
two in this region. But second-order accuracy is rigorously maintained inside the 
boundary layer; and, although the viscous shearing stress term has only first- 
order accuracy outside the boundary layer, the shearing stress is very small in 
this region; consequently, the increased smoothing outside the boundary layer 
is not believed to introduce any significant error. The error in the computed 
solutions will later be examined by mesh refinement. 

2.3.2. Navier-Stokes procedure. The procedure for solving the Navier-Stokes 
form of (2.5)-(2.8) employs the ,4DI technique of Douglas 85 Gunn (1964), to 
solve the backward time-difference approximation for the vorticity equation 

41-2 
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( 2 . 5 ) .  It is similar to the procedure used by Briley (1971), except for the treatment 
of vorticity boundary conditions a t  the wall. I n  the present method, the condition 
;Li = 0 a t  the wall is satisfied by setting $i,w = 0, where the subscript w denotes 
the wall value of j. The vorticity-stream-function relation (2.6) then reduces to 
&, = (a2g/a72)i, w/h: at the wall, and the approximation of this latter formula 
by central differences introduces the quantity Fi, u,-l, which in turn is eliminated 
using a central difference approximation for the no-slip condition, 

- 

- 
u ~ , ~  = (a$/a7)i,w/h, = 0. 

The final vorticity boundary condition has second-order accuracy. It is given by 

(2.37) 

A?lT is the (uniform) grid spacing in the transformed co-ordinate qT. Equation 
(2.27) couples the vorticity and stream-function solutions; and, since the solution 
procedure requires implicit boundary values for vorticity before the stream 
function is available, the wall condition (2.27) is satisfied iteratively. I n  the solu- 
tion procedure, the backward time-difference form of the vorticity equation 
(2 .5 )  is solved by the Douglas & Gunn (1964) AD1 procedure for parabolic 
equations, in which the x-direction and then the 7-direction derivatives of c are 
treated implicitly in successive steps, and the resultant linear difference approxi- 
mations €or P+l are solved by a simple tridiagonal-matrix technique. The differ- 
ence form of the stream-function equation (2.6) is solved iteratively, using the 
Peacernan & Rachford (1955) AD1 method for elliptic equations. Since the 
implicit treatment of the cross-derivative term appearing in the differential 
operator D is awkward for AD1 methods, this term is treated explicitly (i.e. 
evaluated from known quantities a t  the n level) in both of (2.5) and (2.6). The 
iterative procedure for satisfying the vorticity boundary condition (2.27) is based 
on a point-to-point application of the well-known secant method (cf. Ralston 
1965), to obtainvalues of czkl and that satisfy (2.27). Using two different 
sets of assumed values for wall vorticity, denoted by fi and f t, (2.5) and (2.6) are 
solved by the procedures outlined above, t o  obtain En+l and P+l a t  interior 
points, and two sets of errors are recorded: E: and q, which are defined as the 
difference between the assumed values of wall vorticity and those computed 
from (2.27). The third and successive guesses for wall vorticity a t  each streamwise 
location are obtained from the secant-method iteration formula 

- 

6t &l = (av T / d 7  )", $:"+ 1 /(hi A11T)2* 

ff = ff-'+ E:-l(ff-1- ff-"/(Ef-2 -@-I), q z 3.4,  . . . . (2.28) 

q is the iteration index. It is convenient to use values of wall vorticity from the 
previous time step, E&,, as the initial guess f i , and to obtain f t  by adding a small 
constant to f:. Since the initial guess czw is a very good approximation to the 
final solution EZL1, the secant method normally converges after only one applica- 
tion of (2.28). I n  the fiow cases considered here, the foregoing solution procedure 
was found to be stable for time steps at least 50 times the maximum time step 
permitted by the viscous stability criterion 

At < min [ ( A ~ ) ~ / 2 ( v  + vT)h2] ,  (2.29) 

which would be applicable to many explicit methods. 
i ,  j 
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2.3.3. Boundary-layer procedure. The solution procedure for the boundary- 
layer equations is the same as that described for the Navier-Stokes equations, 
except for a major simplification which is possible, since the stream-function 
equation (3.6) contains no x derivatives when D = 0 and is therefore a one- 
dimensional equation relating 3 to z. Being one-dimensional, the central 
difference approximation to (2.6) can be combined with the 7-direction-implicit 
step of the AD1 solution procedure for the vorticity equation. The resultant 
linear system of equations for p+l and P+l along an 7-direction row of grid 
points can be written in block-tridiagonal form, and solved by standard block- 
elimination techniques. (See Isaacson & Keller 1966.) The advantage of this 
procedure is that the wall boundary condition (2.27), which couples e:: and 
$;L&l, can be included in the block-tridiagonal system and solved without 
iteration. Two costly iteration procedures required for solution of the Navier- 
Stokes equations are thereby eliminated in the solution of the boundary-layer 
equations : (i) the elliptic AD1 iteration for the stream-function equation; and 
(ii) the secant iteration for wall vorticity. Consequently, the overall solution 
procedure for the boundary-layer form of the governing equations required only 
about one half to one third of the computational effort per time step required by 
the complete Navier-Stokes equations. 

- 

3. Results 
3.1. Computed solutions and comparisons with experiment 

Solutions are presented here for transitional bubbles occurring on an NAClA 
66,-018 symmetric airfoil a t  zero angle of incidence. The first case considered was 
comput,ed for comparison with the experimental measurements of Gault ( 1  955), 
made using an airfoil with 5 f t  chord and a t  a Reynolds number Re, of 2 x 106 and 
free-stream turbulence level T u  of 0.15-0-3 %. These parameters are defined by 
Re, = ii, c /v  and Tu = 100(?/3)*/U,, where F, is the velocity of the uniform flow 
at  large distance from the airfoil, and c is the chord length. The only additional 
information required by the analysis is the inviscid velocity distribution Ge over 
the airfoil; this was obtained from Gault’s measurements. Gault measured the 
pressure distribution for several Reynolds numbers in the range 1.5 x 106 to 
1 x 107; a t  the highest Reynolds number, transition occurred upstream of what 
would have been the laminar separation point; consequently, there was no separa- 
tion bubble, and no evidence of viscous-inviscid interaction due to a bubble. The 
pressure distribution data a t  Re, = 1 x lo7 were therefore fitted with a curve, and 
used as the inviscid pressure distribution for the airfoil. This pressure distribution 
was used to specify the inviscid velocity distribution U, for the case a t  
Re, = 2 x lo6, which does have a bubble and the associated interaction. 

It will be shown subsequently that, for the range of flow parameters under 
consideration, there is very little difference between solutions computed for the 
boundary-layer and Navier-Stokes form of the governing equations. Therefore, 
all solutions presented are for the boundary-layer form of the equations, except 
where otherwise noted. The first solution presented here has Re, = 2 x loG, 
Tu = 0.175%. It was computed with 31 x 55 grid points for the ?I and x direc- 
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FIGURE 3. Contour plots: turbulent shear stress (2u’v’/U2,) x lo3; streamwise velocity U/G, ; 
stream function ($/Em c) x lo3. Re,  = 2 x lo6, Tu = 0.175 %, 31 x 55 grid. 

tions, respectively. Contour plots for this bubble solution are shown in figure 3, 
where both the transverse distance y and arc length s along the airfoil are normal- 
ized by the chord. The separation and reattachment points are apparent from the 
stream-function and velocity contours; the bubble length is approximately 9 yo 
of the chord. The region in which transition occurs is clearly visible in the 
contours of turbulent shear stress ; and the development of a turbulent boundary- 
layer structure, with laminar sublayer downstream of reattachment, is evident 
in the contours of% The separated region consists of relatively stagnant flow just 
downstream of separation, with a more vigorous vortex motion near reattach- 
ment. A strikingly similar structure for the flow in transitional bubbles has been 
observed experimentally by Gaster (1966) and Young & Horton (1966). The 
streamwise development of various boundary-layer parameters is shown in 
figure 4. The parameters have the following definitions: pressure coefficient 
cp = 1 - (Ue/Um)2; skin friction cr = Zv(aU/ay),/U:; displacement thickness 
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FrGuRE 4. Boundary-layer parameters: pressure distribution 1 -cg, skin friction c,. shape 
factor 6*/H, momentum thickness S/c against streamwise distance s / c .  Re, = 2 x 106, 
Xu = 0.1750;, 31 x 55 grid. 

8” = (I - U/Ee)  (G/Ge) dy. The com- 

puked pressure distribution, which includes the correction for viscous-inviscid 
interaction, has a relatively constant pressure region downstream of separation, 
and rapidly returns to the specified inviscid pressure distribution near reattach- 
ment. The computed pressure distribution is in good agreement with Gault’s 
( I  955) experimental measurements, which are also shown in figure 4. A similar 
qualitatjive behaviour for the pressure distribution near separation bubbles has 
been observed in numerous other experiments, in particular Gaster (1966). The 
relatively stagnant flow downstream of separation, and the more intense vortex 
motion near reattachment’, are again evident in the computed skin-friction curve. 
Velocit,y profiles a t  selected streamwise locations are shown in figure 5, and are 
generally in excellent agreement with Gault’s experimental measurements. The 
maximum reverse flow computed inside the bubbIe is approximately 13 % of the 
local free-stream velocity. 

A second case was computed for the same NACA 66,-018 airfoil for comparison 
with t>he earlier measurements of Bursnall & Loftin (1951) for Re, = 1.7 x lo6 and 

(1 - U/.U,) dy ; momentum thickness 0 = 1: so” 
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FIGURE 5 .  Streamwise velocity G/a, against transverse distance y/c, a t  selected streamwise 
locations s/c: __ , computed, T u  = 0.175%; 0, measurements of Gault (1955), 
Tu = 0.15-0.2 yo. Re, = 2 x lo6, 31 x 55 grid. 

a free-stream turbulence level quoted as a few hundredths of a per cent. A high 
Reynolds number pressure distribution without separation was not available for 
this case, so the pressure distribution measured by Bursnall & Loftin for 
Re, = 1-7 x lo6 was employed, but this measured (interacted) pressure distribu- 
tion was modified near the bubble, to  remove the characteristic 'bump ' caused 
by bubble interaction. It is noted, however, that the measured pressure distribu- 
tion has a maximum value of about 1.8 for (1 - c p ) ,  which disagrees with the value 
of about 1.6 measured by Gault and indicated by inviscid flow theory (Abbott & 
von Doenhoff 1959). Concerning the free-stream turbulence level, it has been 
observed experimentally (cf. McDonald & Fish 1973) that the location of transi- 
tion as measured in different wind tunnels becomes insensitive to free-stream 
turbulence for very small turbulence levels, say Tu less than 0.25 7;. A plausible 
explanation is that transition is then dominated not by the free-stream vorticity 
fluctuations, but by the acoustic energy absorbed by the boundary layer. For the 
purpose of prediction, it would therefore be unrealistic to evaluate the E term in 
the turbulence energy equation on the basis of a free-stream turbulence level of 
a few hundredths of a per cent, as quoted by Bursnall & Loftin, for almost 
certainly transition in this case was precipitated by a largely unknown disturb- 
ance probably acoustic in origin. The value 0.2 % for Tu was therefore used in 
the numerical prediction, since this value led to approximate agreement between 
the computed and measured location of transition. It may be noted in passing 
that the present authors' interests lie largely in the flow regime dominated by 
large free-stream vorticity fluctuations. Computed velocity profiles for this case 
are compared with Bursnall & Loftin's measurements in figure 6. The agreement 
is regarded as reasonable, except near reattachment, where t'he streamwise grid 
spacing is considered inadequate to resolve fully the very rapid flow variations 
observed experimentally. 



Prediction of incomnpressible separation bubbles 

0.006 

U 

0 
0 0 

- 0.819 

649 

0 0  0 0 0 0 0  1.0 
- 4% 
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FIGURE 7. Streamwise velocity S/U, against transverse distance y/c, at selected streamwise 
locations s/c: ~ , computed, boundary layer; --- , computed, Navier-Stokes; 
0, measurements of Gault (1955). Re, = 2 x lo6, Tu = 0.175 yo, 31 x 28 grid. 

3.2. Comparison with Naeiier-Stokes solutions 

Using a 31 x 28 grid, solutions of both the boundary-layer and Navier-Stokes 
forms of the equations were computed, using the same boundary conditions, for 
the Gault case with Re, = 2.0 x lo6 and Tu = 0.175 %. Velocity profiles from 
these two solutions are shown in figure 7; it can be seen that there is very little 
difference between the boundary-layer and Navier-Stokes solutions. The differ- 
ences may well reflect purely numerical errors, due to  differences in the various 
convergence criteria used in the two numerical methods. The general implications 
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distance slc. -, 31 x 28 grid; -0-, 31 x 55 grid. Re, = 2 x lo6, T ~ L  = 0.175 yo. 
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of this comparison are not without some ambiguity, since only one set of flow 
conditions is considered, and since it must be assumed that the imposed free- 
stream boundary conditions represent an adequate treatment of the patching 
interface. Furthermore, even in the case considered, differences may exist 
between the boundary-layer and Navier-Stokes solutions that are not resolved 
for this particular choice of grid spacing. Nevertheless, the comparison in figure 7 
does suggest that the boundary-layer equations are adequate to describe the 
behaviour of thin separation bubbles. Consequently, no further solutions of the 
Navier-Stokes equations are presented herein. 

3.3. Eflect of uiscous-inviscid interaction 

The effect of interaction on the solutions was examined by recomputing bubble 
solutions without interaction (i.e. setting ;li, = 0 ) ,  using Gault’s measured pres- 
sure distribution for Re = 1 x lo7, and using both 31 x 55 and 31 x 28 grids. The 
wall shearing stress and the transverse velocity component 5 a t  the outer 
boundary (q= 1) from these solutions are shown in figures 8 and 9; they are 
compared with similar results from the corresponding interacted solutions. The 
non-interactive solutions display a somewhat erratic behaviour in the region of 
the bubble when the streamwise mesh is halved. I n  particular, the shear .stress 
undergoes an abrupt change downstream of separation, and the transverse 
velocity shows signs of becoming singular. This behaviour is not surprising, in 
view of the previously mentioned evidence that a separation singularity exists 
in solutions of the boundary-layer equations when the free-stream velocity is 
specified without allowing for interaction. The singularity is presumably 
smoothed over a few grid points by the first-order differencing for the x direction. 
The interactive solutions in figures 8 and 9 have a more reasonable dependence 
on the mesh spacing than the non-interactive solutions, particularly near separa- 
tion; these interactive solutions appear to be regular a t  separation. If any singu- 
larities are present in the exact differential solution, they are a t  the very least 
considerably weakened by the interaction. Further evidence of the validity of 
the interactive solutions near separation is provided by the agreement with 
experiment shown previously. The only area of potential difficulty in the inter- 
active solutions when the mesh is refined appears to be near reattachment, where 
the vortex motion associated with reattachment gives rise to relatively large 
negative shear stresses. The variation with streamwise grid spacing of the wall 
shear distribution, just upstream of reattachment in figure 8, can be interpreted 
either as evidence of some sort of singularity, or simply as truncation error in a 
region where the solution varies rapidly with streamwise distance because of the 
intense vortex motion near reattachment. Although no firm conclusion can be 
reached on the basis of the results in figures 8 and 9, the authors are inclined to 
favour the latter interpretation for two reasons. The first is that the intense 
vortex motion is in qualitative agreement with experimental observations from 
several sources (e.g. Gaster 1966; Young & Horton 1966; references therein). 
Second, in the particular flow being computed, Gault’s (1955) measurements 
indicate that the entire reattachment process, as evidenced by the measured 
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Glue 

FIGCRE 10. Streamwise velocity ?i/iie against transverse distance y/c, at selected streamwise 
locations s / ~ :  __ , computed, Tu = 0.2 %; ---, computed, Tu = 0.15%; 0, measure- 
ments of Gault (1955), Tu = 0.15-0*2 yo. Re, = 2 x 108, 31 x 28 grid. 

velocity profiles, takes place in a very short streamwise distance (approximately 
1-2% of the chord). The smallest mesh spacing used in the present solutions 
(31 x 55 grid) corresponds to a streamwise mesh spacing of about 0.4 yo of the 
chord; and the predicted reattachment process occurs over about 3 %  of the 
chord in this solution. This is consistent with the possibility that the flow near 
reattachment is not fully resolved by the 31 x 55 grid. Of course, if streamwise 
gradients were to become sufficiently large near reattachment, this would again 
bring into question the validity of the boundary-layer approximations for this 
region. 

3.4. Further comparisons 

I n  figure 10, solutions computed with the same 31 x 28 grid, but with free-stream 
turbulence levels Tu of 0-15 yo and 0-2 yo, are shown. As would be expected, the 
effect of the higher free-stream turbulence level is to move the transition point 
upstream, and consequently, to reduce the size of the bubble. As shown in 
figure 10, the computed velocity profiles are somewhat sensitive to the free- 
stream turbulence level, a t  least in the region of the bubble where transition 
occurs. There is much less difference between the computed profiles a t  the down- 
stream boundary s/c = 0.8, where the flow is fully turbulent. 

A summary of the effect that various changes in the solution procedure have on 
the computed wall shearing stress relative to a reference case with a 31 x 38 grid 
is shown in figure 11. As mentioned previously, the effect of an increase in free- 
stream turbulence Tu from 0 . 1 5 ~ 0  to 0.2% is to move the transition point 
upstream, thereby reducing the size of the bubble, as is evident in figure 11. An 
increase in the number of transverse grid points from 31 to 41 is seen to have very 
little effect on the computed wall shear. This lack of dependence on transverse 
mesh spacing is an indication that numerical truncation errors are small for the 
transverse direction. The difference between the boundary-layer and Navier- 
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FIGURE 11. Wall shearing stress 2 v z , / G ~  against streamwise distance SIC: (a) a, Tu = 0.2 %; 
-, Tu = 0.15%. (b)  0, 41 x 28 grid; - , 31 x 28 grid. (c )  0, Navier-Stokes; -, 
boundary layer. (d )  0, with normal stress; __ , without normal stress. Re, = 2 x lo6. 

Stokes solutions is also included in figure 11; as mentioned previously, this 
difference is relatively minor, and possibly due to numerical error. The effect of 
including the turbulent normal stress terms in the time-averaged vorticity 
equation is also shown in figure 11. The normal stress terms were modelled in the 
same manner as in the turbulence kinetic energy equation, i.e. the last term in 
(2.1) was replaced by 

and treated explicitly in the numerical solution procedure. Although the normal 
stress terms do have some effect on the solution, including them did not affect 
the location of transition. Thus the influence of the normal stress terms is not 
regarded as highly significant. The transient behaviour of wall shearing stress, 
a t  selected streamwise locations, is shown in figure 12 for a typical solution. These 
transients are included as a demonstration that the computed solutions were 
indeed steady; the degree of accuracy of the transients in figure 12 was not 
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FIGURE 12. Wall shearing stress 2vZu./;ii2, against time at  selected streamwise locations: 
(a) SIC = 0.579, near upstream boundary; ( b )  SIC = 0.725, maximum negative shear; 
( c )  SIC = 0-8, near downstream boundary. Re, = 2 x 106, Tu = 0-175 %, 31 x 55 grid. 

established. Finally, although not shown here, solutions for attached transitional 
boundary layers computed with the present method were found to be in excellent 
agreement with corresponding solutions computed by the McDonald & Fish 
(1 973) procedure. Additional comparisons between computations made with the 
present procedure and analytic solutions are presented by Shamroth & Kreskov- 
sky (1 974). 

Since the numerical method is implicit, and therefore not subject to conven- 
tional explicit stability limits, the same time step can be used with different 
spatial mesh sizes. As a consequence, the computer time required for a given 
solution is approximately linear in the number of spatial grid points. A typical 
case with a 31 x 55 grid required about 300 time steps to reach steady state 
(cf. figure 12) and about 20 min of UNIVAC 1110 computer time. About one half 
of the computational effort was spent evaluating the turbulence model; about 
one quarter was spent solving the implicit difference equations. The relative 
amount of computer time spent evaluating the turbulence model is considerable. 
But presumably it is less than might result from solving a number of partial 
differential equations, as would perhaps be required for one of the more recent 
multi-equation turbulence models. Consequently, it would seem prudent to  
explore fully the potential of the simpler models, such as the present one, prior 
to embarking on the considerable labour of a multi-equation model. 
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4. Conclusions 
(i) A method has been developed which is suitable for making routine and 

economical detailed computations of thin incompressible separation bubbles on 
smooth surfaces. The method requires as input only the inviscid velocity distribu- 
tion along the surface and the free-stream turbulence level. The method accounts 
for interaction with the inviscid free stream; but it does not require an elaborate 
iterative scheme for matching viscous and inviscid boundary conditions. The 
method also provides a realistic detailed description of the location of transition 
and of mean flow behaviour during and after transition, including the sublayer 
region. 

(ii) Computed solutions for transitional separation bubbles on an airfoil were 
found to be in reasonable agreement, both qualitatively and quantitatively, with 
available experimental data. 

(iii) When the same boundary conditions were used, little difference was found 
between steady solutions of the boundary-layer and Navier-Stokes equations in 
a test case consisting of a thin bubble at  high Reynolds number. 

(iv) Numerical evidence was obtained, which suggests that the well-known 
separation singularity, present in conventional solutions of the steady boundary- 
layer equations when the free-stream velocity is specified, is effectively removed 
when viscous-inviscid interaction is allowed to influence the imposed velocity 
distribution. 
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